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Semiflexible polymer in a uniform force field in two dimensions
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The conformational properties of a semiflexible polymer chain, anchored at one end in a uniform force field,
are studied in a simple two-dimensional model. Recursion relations are derived for the partition function and
then iterated numerically. We calculate the angular fluctuations of the polymer about the direction of the force
field and the average polymer configuration as functions of the bending rigidity, chain length, chain orientation
at the anchoring point, and field strength.
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I. INTRODUCTION

The influence of external forces on the conformatio
properties of polymers has been studied extensively in re
years. Polymers stretched by attached magnetic beads@1#, by
laser tweezers@2,3#, and by optical fibers@4# and polymers in
flow fields @5–8# have received much of the attention@9#.
The study of polymer deformation in elongational flow go
back to the prediction of a coil-stretch transition@10,11# and
early birefringence and light scattering experiments@12,13#.
Experimental techniques@5,14–16# that allow direct visual-
ization of polymer conformations in simple flows have giv
this field a new perspective. Here the main idea is to
fluorescently labeled DNA molecules, which are lo
enough so that their conformations can be resolved in
optical microscope.

In contrast to typical synthetic polymers, DNA chains a
semiflexible, with a persistence length of about 80 nm.
contour lengths of a few micrometers or more these cha
behave as flexible polymers, in the absence of exte
forces. In the case of highly stretched DNA chains the be
ing rigidity has been shown to play an important ro
@17,18#.

The force-extension curve of a semiflexible polym
pulled at both ends is derived in Ref.@18#. Predicting the
deformation of a polymer in a flow field is considerab
more complicated for two reasons. First, there is a dir
hydrodynamic interaction between different polymer se
ments@19–21#. Second, even if the conformation-depende
fluctuating drag on each bead is approximated by a frict
term proportional to the local flow velocity~‘‘free-draining’’
approximation!, the force on each bead depends on the p
tions of all other beads. Thus, most theoretical studies h
relied on computer simulations@6,19–22# and/or consider
flexible chains@19,23–26#.

In this paper we study the conformational properties o
semiflexible chain, anchored at one end, in two dimensi
in a constant force field. In our model the polymer partiti
function is determined by simple recursion relations, wh
are easily iterated numerically. Very little computing time
required, and there is no statistical error in the results,
some other approximations, such as the Villain approxim
1063-651X/2001/64~6!/061801~8!/$20.00 64 0618
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tion @27#, are involved, as will become clear.
The two-dimensional model of a semiflexible polymer

described in Sec. II. Recursion relations for the partiti
function are derived in Sec. III. In Sec. IV we calculate t
angular fluctuations of the polymer segments about the
rection of the applied force, and in Sec. V the longitudin
extension due to the force. In Sec. VI we vary the an
between the polymer and the force field at the anchor
point and see how this affects the mean polymer configu
tion. Finally, in Sec. VII the case of a polymer pulled at i
ends is briefly considered.

II. THE MODEL

In the wormlike chain model of a semiflexible polyme
the Hamiltonian is given by@28#

H05
k

2E0

L

ds~]st!
2, ~1!

where t is a unit tangent vector ands is the arclength. We
consider a discrete version of this model in two spatial
mensions, with Hamiltonian

H05J(
i 51

N

~u i2u i 21!2. ~2!

The polymer chain consists ofN11 line segments of fixed
unit length. Thei th segment forms an angleu i with the x
axis. One end of the polymer is anchored at the origin, a
the orientation angleu0 of the first segment is also assume
to be fixed.

To include a uniform force fieldF0 in the x direction, we
add the terms

H152F0(
i 51

N

xi52F0(
i 51

N

(
j 51

i

cosu j

52F0(
i 51

N

~N112 i !cosu i ~3!
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to the Hamiltonian. The external field could be an elect
gravitational, or uniform flow field. The partition functio
corresponding to Eqs.~2! and ~3! is given by

ZN5E
2`

`

du1•••E
2`

`

duNexpH 2(
i 51

N

@K~u i2u i 21!2

1L̂~N112 i !cosu i #J , ~4!

whereK5J/kT and L̂5F0 /kT.
A nice feature of this model is that it can be solved e

actly in the absence of an external field, i.e., forL̂50. The
mean square end-to-end distance is given by

^RN
2 &5N111

2

e1/j21
FN2

12e2N/j

e1/j21
G ~5!

with the persistence lengthj54K. For N@j@1, ^RN
2 &

.(112j)N, corresponding to an ideal flexible chain wi
Kuhn length 112j. In the limit N!j with j@1, ^RN

2 &
.(N11)2, corresponding to a rigid rod.

To obtain a more tractable model, we make the Villa
approximation@27#

exp@ L̂cosu#→ (
m52`

`

exp@2L~u22pm!2# ~6!

in Eq. ~4!. It was originally introduced in studies of the two
dimensionalx-y model and the roughening transition, whe
the Hamiltonians have a similar form. The approximati
preserves the periodicity of the cosine function but leads
more manageable Gaussian integrals. An irrelevant norm
ization factor on the right-hand side has been omitted. T
constantL may be determined by expanding both sides
Eq. ~6! in Fourier series and equating the lowest two Four
coefficients. This yields@27#

L5F4 ln
I 0~ L̂ !

I 1~ L̂ !
G21

, ~7!

whereI 0 and I 1 are modified Bessel functions.
Replacing(m52`

` in Eq. ~6! by (m52mmax

mmax defines a fur-

ther approximation, which may be systematically improv
by increasingmmax. In the finitemmax approximation, con-
figurations with up tommax loops about the origin receive th
same statistical weight as formmax5`, but the statistical
weight of configurations with more thanmmax loops is un-
derestimated.

III. RECURSION RELATIONS

As a first approximation we neglect all but them50 term
in Eq. ~6!, replacingeL̂ cosu by e2Lu2

. This is a good approxi-
mation for sufficiently largeK and/orL. The corresponding
partition function is
06180
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ZN
0 ~h1 , . . . ,hN!5E

2`

`

du1•••E
2`

`

duN

3expH (
i 51

N

@2K~u i2u i 21!22Liu i
2

1hiu i #J , ~8!

where

Li5~N112 i !L, ~9!

as follows from Eq.~4!. The hi are auxiliary variables tha
will be used in calculating thermal averages.

The partition function~8! may be evaluated by straigh
forward integration overu1 ,u2 , . . . . Thefirst k21 integra-
tions contribute

Qk
0~uk!5E

2`

`

du1•••E
2`

`

duk21

3expH (
i 51

k

@2K~u i2u i 21!22Liu i
21hiu i #J

5qkexp@2gkuk
212bkuk#, ~10!

whereqk is a constant, independent ofuk . Equation~10! and
the recursive property

Qk
0~uk!5E

2`

`

duk21exp@2K~uk2uk21!22Lkuk
2

1hkuk#Qk21
0 ~uk21! ~11!

imply

qk5S p

gk211K D 1/2

expF bk21
2

gk211KGqk21 , ~12!

where

g15K1L1 , ~13!

gk5
Kgk21

gk211K
1Lk , k52, . . . ,N, ~14!

b15Ku01
1

2
h1 , ~15!

bk5
Kbk21

gk211K
1

1

2
hk , k52, . . . ,N. ~16!

Iterating Eq. ~12! to obtain qN and using ZN
0

5*duNQN
0 (uN)5(p/gN)1/2exp@bN

2/gN#qN , as follows from
Eqs.~8! and ~10!, we obtain
1-2
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ZN
0 5F p

gN

p

gN211K
•••

p

g11KG1/2

3expFbN
2

gN
1

bN21
2

gN211K
1•••1

b1
2

g11KG . ~17!

The partition function~17! is completely determined by th
recursion relations~13!–~16! and theLi defined in Eq.~9!.

IV. ANGULAR FLUCTUATIONS

We now derive the angular fluctuations^u i
2& of the poly-

mer chain in a constant force field from the partition functi
ZN

0 of Eqs.~8! and~9!. In this section we set the initial angl
u0 and all of the auxiliary variableshi equal to zero. In this
case

K^u i
2&5 f i~L/K,N! ~18!

depends onK andL only in the combinationL/K. This fol-
lows from rescaling the anglesu i in the partition function
~8!. A second consequence is that thebk in Eqs.~15!–~17! all
vanish.

Using the definition~9! of Li , we write the recursion
relation ~14! for gk in the form

gk5K1L~N112k!2
K2

K1gk21
. ~19!

According to Eqs.~9!, ~17!, and~19! the angular fluctuations
^u i

2&52] ln ZN
0/]Li satisfy

^uk
2&5

1

2~gk1K !
1S K

gk1K D 2

^uk11
2 &, k51, . . . ,N21,

~20!

^uN
2 &5

1

2gN
. ~21!

We have calculated̂u i
2& by numerical iteration of Eqs

~13!, ~19!, ~20!, and ~21!. The results forL/K50.1 andN
5100, 500, 1000 are shown in Fig. 1. For these three va
of N the results for̂ uN

2 & in Fig. 1 are practically indistin-

FIG. 1. Average angular fluctuationsK^u i
2& for L/K50.1 and

N5100 (d), N5500 (!), N51000 (*).
06180
es

guishable. The same is true of^uN21
2 &, ^uN22

2 &, etc. The
valuesN5100, 500, and 1000 are large enough so that
angular fluctuations at the free end of the chain are indep
dent of the chain length.

We now examine theN dependence of the fluctuations. I
Fig. 2 the quantityK^uN

2 & is plotted as a function ofN for
five different values ofL/K. There is an obvious crossove
from N-dependent toN-independent behavior asN increases.
We denote the approximate value ofN at the crossover by
Nmin . According to Eq.~18!, Nmin depends onK andL only
in the combinationL/K. Figure 3 showsNmin as a function
of L/K. The data are in excellent agreement with

Nmin;~L/K !21/3, L/K!1. ~22!

The power law~22! follows from the following argument.
For L/K!1 the recursion relation~19! implies

gk5
K

k F11kAk

L

K
1O„~L/K !2

…G ~23!

whereAk satisfies the recursion relation

FIG. 2. Average angular fluctuationsK^uN
2 & of the final chain

segment as a function ofN for L/K51025 (d), L/K
51024 (s), L/K51023 (n), L/K51022 (!), L/K
51021 (*). The straight line has slope 1.

FIG. 3. Nmin as a function of L/K for K51 (d), K
510 (s), K5100 (n), K51000 (!). The straight line has
slope21/3.
1-3
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Ak5S k21

k D 2

Ak211~N112k! ~24!

with A15N. Since the factor multiplyingAk21 in Eq. ~24!
approaches unity ask increases,AN;N2 for N@1. For fixed
L/K!1 andN small, the first term ingN , as given by Eq.
~23!, is clearly the dominant term, andgN.K/N. However,
the second term becomes increasingly important asN in-
creases. It is reasonable to assume that a crossover to
ferentL/K dependence occurs when the second term ingN ,
as given by Eq.~23!, becomes comparable with the first, i.e
NAN;N3;K/L for N;Nmin . This leads to Eq.~22! and the
predictiongN;gNmin

;K(L/K)1/3 for L/K!1, N@Nmin .

In the complementary regimeL/K@1 the recursion rela-
tion ~19! implies

gN5KF L

K
112

K

2L
1O„~K/L !2

…G ~25!

for arbitraryN. Since this result is entirely independent ofN,
the large-N behavior has its onset at

Nmin;1, L/K@1. ~26!

We now derive exact analytic expressions for the fluct
tions ^uN

2 &, ^uN21
2 &, . . . at the end of an infinitely long

chain. Reverse iteration of Eq.~19!, beginning with gN ,
leads to the continued fraction

gN5K1L2
K2

2K12L2

3
K2

2K13L2

K2

2K14L2
. . .

K2

2K1NL
. ~27!

In the limit N→` the continued fraction may be evaluate
with the help of Eq.~9.1.73! in Ref. @29#, yielding

g`5KF Jn~n!

Jn8~n!
21G21

, n5
2K

L
. ~28!

HereJm(z) is the standard Bessel function, andJm8 (z) is its
derivative with respect toz. From Eq.~9.3.23! in Ref. @29#
and Eq.~27!, we obtain

g`.K3H 31/3
G~2/3!

G~1/3! S L

K D 1/3

,
L

K
!1,

L

K
112

K

2L
,

L

K
@1.

~29!

These limiting forms are consistent with the expressions
g`;gNmin

for small and largeL/K given in Eq.~25! and the
paragraph that precedes it.

From the result~28! for ^uN
2 &5(2gN)21 in the large-N

limit, it is straightforward to calculatêuN21
2 &, ^uN22

2 &, . . .
using Eqs.~19!–~21!.

In Fig. 4, K^uN
2 &5K/(2gN) is plotted as a function o
06180
dif-

-

r

L/K for N510, 100, 1000, and compared with the analy
prediction~28! for N→`.

As stated in Sec. III, themmax50 approximation is accu-
rate for sufficiently largeK and/orL. One can use the result
of this section to determine the domain of validity more p
cisely. The approximation, i.e., replacing cosu by 12 1

2 u2,
should be quite reliable if, say,^uN

2 &5(2gN)21,(p/4)2 or
gN.8/p2.1. ComputinggN by numerical iteration, one can
readily check whether this inequality is satisfied for partic
lar values ofK, L, andN. According to Eqs.~23!, ~29!, and
~25!, the inequalitygN.1 corresponds toK.N for L/K
!1 and N!Nmin , to K(L/K)1/3.1.4 for L/K!1 and N
@Nmin , and toL.1 for L/K@1 and arbitraryN.

V. LONGITUDINAL STRETCHING

For a polymer in a constant force field, one of the ma
quantities of interest is the average extension in the fl
direction. According to a prediction of Marko and Sigg
@18#,

^xN&
N

.12C0~LKN!21/2, ~30!

with C051. This result was derived by approximating th
restoring force at positions along the chain with the thermo
dynamic result for a polymer of lengths pulled at its ends.
Note, however, that a polymer in a flow field fluctuates m
strongly at the free end and not at all at the anchored e
quite unlike a polymer pulled at its ends. The derivation a
assumes a boundary condition^cosuN&;LK2!1 at the end of
the chain, at odds with the exact result^uN

2 &;(LK2)21/3 in
Eqs. ~21! and ~29! for large K and N, where our discrete
model is equivalent to the continuum model of Ref.@18#.
One advantage of our approach is that it avoids these
sumptions and yields numerically exact results for the mo
with partition function~8!.

We have checked Eq.~30! for our model, using the rela
tions

FIG. 4. K^uN
2 &5K/(2gN) for a polymer in a constant force field

as a function ofL/K for N510 (d), N5100 (s), and N
51000 (n), together with the exact result~28! for N→`(!). The
straight lines have slopes21/3 and21, respectively.
1-4
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^xN&5(
j 50

N

^cosu j&5
1

2 (
j 50

N

^eiu j1e2 iu j&, ~31!

^e6 iu j&5
ZN

0 ~0, . . . ,hj56 i ,0, . . .!

ZN
0 ~0, . . . ,0!

. ~32!

Here the numerator on the right side of Eq.~32! is the par-
tition function of Eqs.~8! and ~17! with all of the auxiliary
fields set equal to zero except thathj5 i . In the denominator
all of the auxiliary fields, includinghj , vanish.

Calculating these partition functions recursively usi
Eqs.~13!, ~14!, and~17!, with theLi defined by Eq.~9!, we
obtained the results for the extension shown in Fig. 5. T
data for sufficiently largeK do indeed confirm Eq.~30!. For
our modelC0.0.23.

It is instructive to compare the chain lengthN with Nmin
in the regime where Eq.~30! applies. ForK51000 andN
510 000~filled circular points in Fig. 5! the six-decade in-
terval 100,LKN,106 corresponds to 10210,L/K,1024,
or @see Eq.~22! and Fig. 3# to 20 000.Nmin.200. Thus, the
inequality N@Nmin holds only for the last three decades
LKN.

There are deviations from the straight line in Fig. 5 f
smallerK and largerL. For L@K, the recursion relation~19!
implies

gk.~N112k!L ~33!

and

^xN&5(
i 50

N

^cosu i&.N2
1

2 (
i 50

N

^u i
2&.N2

1

4 (
i 50

N
1

g i
.

~34!

The sum over the chain segments is easily carried out
yields

^xN&.N2
ln N

4L
. ~35!

FIG. 5. Average extension̂xN& of the chain in the direction of
the force field as a function of the field strengthL, for K510, N
5100 (*); K510, N51000 (s); K510, N510 000 (L); K
5100, N51000 (n); K5100, N510 000 (!); K51000, N
510 000 (d). The straight line has slope21/2.
06180
e
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In Fig. 6 numerical data for several bending rigiditie
chain lengths, and force fields are compared with this res
The agreement is excellent. Thus, for a sufficiently stro
force field or a sufficiently small bending rigidity, the cha
extension varies asL21, just as for flexible chains with arbi
trary L.

VI. MEAN POLYMER CONFIGURATION FOR u0Å0

In this section we consider polymer conformations w
the first segment fixed at a nonzero angleu0 with respect to
the direction of the force field. We make the Villain approx
mation and restrict the sum in Eq.~6! to m521,0,1. In the
corresponding polymer partition function there is a separ
sum overm for each polymer segment. For a sufficiently st
polymer and/or a sufficiently strong force field, the confo
mations of the chain are dominated by thesamepotential
minimum. In this case the separate sums may be replace
a single sum, leading to the simpler partition function

Z̃N~ h̃1 , . . . ,h̃N!5 (
m521

1 E
2`

`

du1•••E
2`

`

duN

3expH (
i 51

N

@2K~u i2u i 21!2

2Li~u i22pm!21h̃iu i #J . ~36!

Here we have again introduced a set of auxiliary variab
h̃i , to be used in constructing thermal averages.

Expanding (u i22pm)2 in powers ofu i , one sees that the
partition function~36! can be expressed as

Z̃N~ h̃1 , . . . ,h̃N!5 (
m521

1

e24p2m2(L11•••1LN)ZN
0 ~ h̃1

14pmL1 , . . . ,h̃N14pmLN! ~37!

FIG. 6. Average extension̂xN& of the chain in the direction of
the force field as a function of the field strengthL. The symbols
correspond to the same parameters as in Fig. 5. The straight line
slope21.
1-5
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in terms of them50 partition functionZN
0 (h1 , . . . ,hN) de-

fined in Eq.~17!. Since we know how to calculateZN
0 nu-

merically with the recursion relations of Sec. III, we can a
calculateZ̃N via Eq. ~37!. Using Eqs.~9!, ~13!–~17!, ~37!,
and the relations

^xk&5(
j 50

k

^cosu j&5
1

2 (
j 50

k

^eiu j1e2 iu j&, ~38!

^yk&5(
j 50

k

^sinu j&5
1

2i (
j 50

k

^eiu j2e2 iu j&, ~39!

^e6 iu j&5
Z̃N~0, . . . ,h̃ j56 i ,0, . . .!

Z̃N~0, . . . ,0!
, ~40!

we have evaluated the average position of thej th segment of
the polymer chain for fixedu0. Figures. 7–12 show how th
average position depends on the tilt angleu0, field strength
L, and bending rigidityK. In all of these figuresN5100.

Figures. 7 and 8 show the average polymer configura
in thex,y plane. As the field strength increases, the polym

FIG. 8. Average positionŝxi&,^yi& of a chain of lengthN
5100 with K510, u05p/3 ~lower panel!, and u052p/3 ~upper
panel!, with L51025 (s), L51024 (n), L51023 (!), and L
51021 (d). The straight line indicates the tilt angleu0.

FIG. 7. Average positionŝxi&,^yi& of a chain of lengthN
5100 with K51, u05p/3 ~lower panel!, and u052p/3 ~upper
panel!, with L51025 (s), L51024 (n), L51023 (!), and L
51021 (d). The straight line indicates the tilt angleu0.
06180
n
r

is bent toward the field direction and is stretched longitu
nally. The elongation is more pronounced for smaller be
ing rigidities.

In Fig. 9 the transverse extension of the polymer a
function of the tilt angle is shown in more detail. The curv
are sinusoidal for small field strengthsL but for largerL bend
abruptly nearu056p, due to the instability of a polyme
directed against the force field. Since our model includ
fluctuations, the polymer ‘‘tunnels’’ between the two equiv
lent free-energy minima, and there is no spontaneous s
metry breaking atu05p.

Figure 10 shows the tranverse extension as a functio
the field strength for three differentu0. For K510, N5100,
and L,1025, the effect of the force field is negligible. Fo
stronger force fields, there seems to be a regime wh
^yN&;L22/5.

The contour lengthCl of the average configuration~see
Figs. 7 and 8! is shown in Fig. 11. Again, the effect of th
force field is negligible forK510, N5100, andL,1025 .
Varying the tilt angle only affects the contour length near t
onset of the deformation due to the force field.

Finally, we have considered the angled between a line
through the end points of the chain and the direction of
force field. A weak force field deforms the polymer on

FIG. 10. Average transverse extension^yN& as a function ofL
for N5100, K510, andu05p/3 (d), u052p/3 (s), and u0

517p/18 (n).

FIG. 9. Average transverse extension^yN& as a function ofu0

for N5100, K510, and L51029 (*), L51025 (!), L
51023 (n), L51022 (s), L51021 (d).
1-6
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SEMIFLEXIBLE POLYMER IN A UNIFORM FORCE . . . PHYSICAL REVIEW E 64 061801
slightly, andd varies linearly with the tilt angleu0. For a
strong force field, on the other hand,d varies abruptly asu0
approachesp, due to the instability mentioned above. Th
behavior ofd as a function ofL in Fig. 12 is qualitatively
similar to that of^yN& in Fig. 10.

VII. POLYMER PULLED AT ITS ENDS

Thus far we have considered an external force field t
acts on each monomer of the semiflexible polymer. W
only minor modifications the case of a constant force app
at the ends of the polymer can also be studied. Ancho
one end at the origin at a fixed angleu0, we apply a constan
force at the other end by replacing Eq.~3! with H15
2F0xN52F0( j 51

N cosuj . In the Villain approximation~6!
the partition function is again given by Eq.~8!, but Eq.~9! is
replaced byLi5L. With this definition of theLi the partition
function may be calculated recursively, as in Sec. III. F
symmetric boundary conditions at the ends of the chain,
u0 anduN both fixed or both free to fluctuate, the calculatio
is also straightforward.

For fixed u050 and fluctuatinguN , the angular fluctua-
tions of the polymer segments are given by Eqs.~18!, ~20!,

FIG. 11. Contour lengthCl of the average configuration as
function of L for N5100, K510, and u05p/180 (d), u0

5p/3 (s), andu052p/3 (n).

FIG. 12. Angled between a line through the end points of t
chain and the direction of the force field as a function ofL for N
5100, K510, and u05p/180 (d), u05p/3 (s), and u0

52p/3 (n).
06180
t
h
d
g

r
.,

and ~21!, with Eq. ~19! replaced by

gk5K1L2
K2

K1gk21
. ~41!

In the long chain limitgN approaches the fixed point

g`5
L

2
1F S L

2D 2

1KLG1/2

~42!

of Eq. ~41!.
For largeK andN our discrete model is equivalent to th

continuum model of Marko and Siggia@18#. In this limit
Eqs. ~21! and ~42! imply the same result̂uN

2 &5(4KL)21/2

for the angular fluctuations as in Ref.@18#.
In Fig. 13, K^uN

2 &5K/(2gN) is plotted as a function of
L/K for N510, 100, 1000, and 10 000 and compared w
the analytic prediction~42! for N→`.

We have also calculated the mean configuration of a po
mer pulled at its ends for fixedu0.0 and fluctuatinguN .
Figure 14 shows the tranverse extension as a function of
force for three differentu0. For K510, N5100, andL

FIG. 13. K^uN
2 &5K/(2gN) for a polymer pulled at the ends as

function ofL/K for N510 (*), N5100 (n), N51000 (s), and
N510 000 (d), together with the exact result~42! for N→`(!).
The straight lines have slopes21/2 and21, respectively.

FIG. 14. Average transverse extension^yN& of a polymer pulled
at its ends as a function ofL for N5100, K510, and u0

5p/3 (d), u052p/3 (s), u0517p/18 (n).
1-7
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,1023, the effect of the force is negligible. For strong
forces there seems to be a regime where^yN&;L22/5. We
found quite similar behavior for a polymer in a uniform forc
field, as shown in Fig. 10.

VIII. CONCLUDING REMARKS

For calculating the conformational properties of a sem
flexible chain in a uniform force field our recursive approa
has several advantages.~i! It requires very little computing
time, and~ii ! it allows one to consider very long chains. F
a clearly defined model exact numerical results are obtain
Thus, ~iii ! there is no statistical error, and~iv! some of the
approximations in earlier theoretical work are avoided.
nally, ~v! the recursion relations furnish some analytical
sight. We were able to obtain some exact results for
asymptotic behavior of long chains. While most previo
studies have focused on the force-extension relation, we h
also analyzed angular fluctuations.

A disadvantage of the approach is the limitation to tw
dimensions. However, many of the results probably apply
least qualitatively, to chains in three spatial dimensions. F
thermore, the results are directly applicable to polymers c
fined to two dimensions, for example, DNA electrostatica
bound to fluid lipid membranes@30#.

The Villain approximation was used to obtain a tracta
model. It preserves the periodicity inu and is no more un-
realistic than using a quadratic bending energy for arbitr
angles or ignoring excluded volume. We presented res
only for the single-m approximation withmmax<1, which
underestimates the statistical weight of configurations w
nc

e

ur

06180
-

d.

-
-
e
s
ve

at
r-
n-

y
lts

h

segments pointing in widely different directions but is acc
rate for sufficiently largeK and/orL.

The single-m approximation can, of course, be improve
at the cost of greater computing time. Retaining all the V
lain sums leads to the partition function

ZN~ h̃1 , . . . ,h̃N!

5 (
m152`

`

••• (
mN52`

`

e24p2m1
2L1

•••e24p2mN
2 LN

3ZN
0 ~ h̃114pm1L1 , . . . ,h̃N14pmNLN!

~43!

instead of Eq.~37!. HereZN
0 is them50 partition function in

Eq. ~17!, which we know how to compute recursively. Us
ally one is interested inK and L for which the angular dif-
ferences between adjacent segments are small, certainly
than 2p. Then the sums on the right side of Eq.~43! may be
restricted to the terms with21<m1<1, m121<m2<m1
11, etc. ComputingZN with no further approximations re
quires 3N evaluations ofZN

0 .
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